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                 Date : 08-04-2011 
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        Max. : 100 Marks

                 Time : 9:00 - 12:00 
                                             
PART – A

Answer ALL questions







(10x2 =20 Marks)

1. Define least upper bound of a set.

2. Define convergent sequence.

3. Define cumulative distribution function and state any two of its properties.

4. Give an example for a monotonic sequence.

5. Define absolute convergence and conditional convergence for a series of real numbers.

6. Define M.G. F of a random variable.

7. State Roll’s theorem.

8. Define Taylor’s expansion of a function about x = a.

9. Define rank of a matrix.

10. Define symmetric matrix. Give an example.

PART – B

Answer any FIVE questions







        (5x8=40 Marks)

11. Show that every convergent sequence is bounded. Is the converse true? Justify your answer.

12. Obtain the c.d.f. of the total number of heads occurring in three tosses of a fair coin.

13. Establish the convergence of (a) 
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 ; (b) 
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14. Show that if a function is derivable at a point, then it is continuous at that point.

15.  If two random variables X and Y have the joint probability density        
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Find the marginal densities.

16. Find the Lagrange’s and Cauchy’s remainder after nth term in the Taylor’s series expansion of loge(1+ x).

17.  Verify whether or not the following sets of vectors form linearly independent sets:

       (a) (1, 2, 3), (2, 2, 0) 

       (b) (3, 1, -4), (2, 2, -3) 

18. Find the inverse of a matrix 
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PART – C

Answer any TWO questions






      (2x20=40 Marks)

19. (a) Prove that a non-increasing sequence of real numbers which is bounded below is convergent.

(b)Prove that the sequence 
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 is convergent.

20. (a) State and Prove Rolle’s Theorem

(b) Find a suitable c of Rolle’s Theorem for the function    
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21. A random variable X has the following probability function

	x
	1
	2
	3
	4
	5
	6
	7

	P(x)
	0
	k
	2k
	2k
	k2
	2k2
	7k2+k


(i) Find k  

(ii) Evaluate (a) 
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(iii)  If 
[image: image11.wmf]2

1

)

(

>

£

k

X

P

, find the minimum value of k  

(iv)  Determine the distribution function of X. 

22.  (a) If 
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            is the joint p.d.f. of X and Y, find the marginal p.d.f.’s. Also, evaluate                  

            P[ (X < 1) 
[image: image14.wmf]I

 (Y < 3) ] 

(b) Find the rank of the matrix 
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